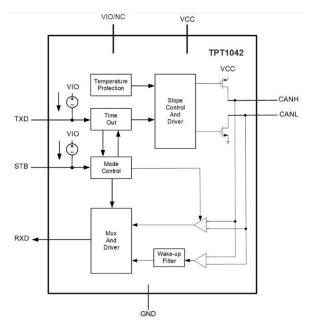


Features

- Meet the ISO 11898-2:2016 and ISO 11898-5:2007 Physical Layer Standards
- Support CAN FD and data rates up to 5 Mbps
- Typical Loop Delay: 110 ns
- 5 V power supply, 3.0 V ~ 5.5 V IO interface
- Low power current in standby mode: 15 μA
- Receiver Common Mode Input Voltage: ±30 V
- Bus Fault Protection: ±70 V
- Up to 110 Nodes in CAN network
- Junction Temperature Range from -40°C to 150°C
- Latch-Up performance exceeds 500 mA
- BUS pin ESD Protection:
 - ±2.5 kV Human-Body Model
 - ±1.5 kV Charged-Device Model


Applications

- All devices supporting highly loaded CAN networks
- Automotive and Transportation
- Field Industrial Automation, Sensors and Drive Systems
- Building, Security Control Systems

Description

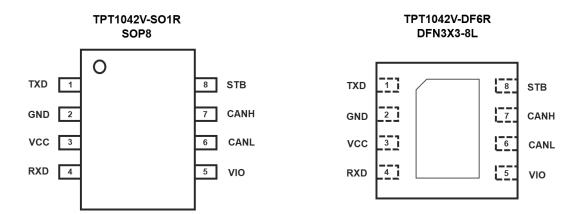
The TPT1042 is a CAN transceiver that meets the ISO11898 High-speed CAN (Controller Area Network) physical layer standard. The device is designed in CAN FD networks up to 5 Mbps, and enhances timing margin and higher data rates in long and highly-loaded networks. As the design, the device features cross-wire, overvoltage and loss of ground protection from -70 V to +70 V, overtemperature shutdown, a -30 V to +30 V common-mode range. The TPT1042 has a secondary power supply input for I/O level shifting the input pin thresholds and RXD output level, and the device comes with standby mode which is also waked up from CAN BUS, and it includes many protection features to enhance device and network robustness.

The TPT1042 is available in SOP-8 and DFN3X3-8L packages and is characterized from -40° C to $+125^{\circ}$ C.

Functional Block Diagram

Table of Contents

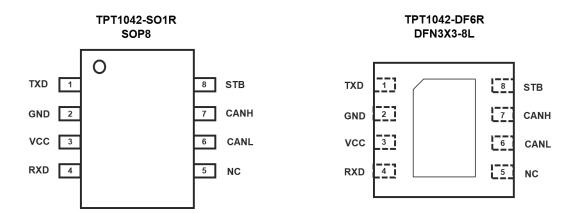
Features	
Applications	. 1
Description	. 1
Functional Block Diagram	. 1
Revision History	. 3
Pin Configuration and Functions-TPT1042V	. 4
Pin Functions	. 4
Pin Configuration and Functions-TPT1042	. 5
Pin Functions	. 5
Specifications	. 6
Absolute Maximum Ratings	. 6
ESD, Electrostatic Discharge Protection	. 6
Recommended Operating Conditions	. 6
Thermal Information	. 6
Electrical Characteristics	. 7
Detailed Description	12
Overview	12
Functional Block Diagram	12
Feature Description	12
Tape and Reel Information	14
Package Outline Dimensions	15
SO1R(SOP-8)	15
DF6R (DFN3X3-8L)	16
Order Information	17



Revision History

Date	Revision	Notes
2020-12-05	Rev.Pre.0	Initial Version
2021-10-21	Rev.Pre.1	Added electrical parameter
2022-01-12	Rev.Pre.2	Updated ESD data

Pin Configuration and Functions-TPT1042V



Pin Functions

Р	in	1/0	Description
No.	Name	I/O	Description
1	TXD	I	CAN transmit data input (LOW for dominant and HIGH for recessive bus states)
2	GND	GND	Ground
3	VCC	POWER	Transceiver 5 V supply voltage
4	RXD	0	CAN receive data output (LOW for dominant and HIGH for recessive bus states)
5	VIO	POWER	Transceiver I/O level shifting supply voltage (Devices with "V" suffix only)
6	CANL	BUS I/O	Low level CAN bus input/output line
7	CANH	BUS I/O	High level CAN bus Input/output line
8	STB	I	Standby Mode control input (active high)

Pin Configuration and Functions-TPT1042

Pin Functions

Р	in	1/0	Description	
No.	Name	I/O	Description	
1	TXD	I	CAN transmit data input (LOW for dominant and HIGH for recessive bus states)	
2	GND	GND	Ground	
3	VCC	POWER	Transceiver 5 V supply voltage	
4	RXD	0	CAN receive data output (LOW for dominant and HIGH for recessive bus states)	
5	NC	-	Not Connected	
6	CANL	BUS I/O	Low level CAN bus input/output line	
7	CANH	BUS I/O	High level CAN bus input/output line	
8	STB	I	Standby Mode control input (active high)	

Specifications

Absolute Maximum Ratings

	Parameter	Min	Мах	Unit
Vcc	5-V Bus Supply Voltage Range	-0.3	7	V
V _{IO}	I/O Level-Shifting Voltage Range	-0.3	7	V
VBUS	CAN Bus I/O voltage range (CANH, CANL)	-70	70	V
V(Logic_Input)	Logic input terminal voltage range (TXD, S)	-0.3	7	V
V(Logic_Output)	Logic output terminal voltage range (RXD)	-0.3	7	V
IO(RXD)	RXD (Receiver) output current	-8	8	mA
TJ	Maximum Junction Temperature	-40	150	°C
T _{STG}	Storage Temperature Range	-65	150	°C
T _{OTP}	Shutdown Junction Temperature		170	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.

(2) This data was taken with the JEDEC low effective thermal conductivity test board.

(3) This data was taken with the JEDEC standard multilayer test boards.

ESD, Electrostatic Discharge Protection

Symbol	Parameter	Condition	Minimum Level	Unit
НВМ Н		Bus Pin: CAN_H, CAN_L	±2.5	kV
	HBM, per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	All Pin Except Bus Pin	±8	kV
CDM	CDM, per ANSI/ESDA/JEDEC JS-002 ⁽²⁾	All Pin	±1.5	kV
LU	LU, per JESD78	All Pin	±500	mA

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

Recommended Operating Conditions

	Parameter	Min	Мах	Unit
V _{I/O}	Input/output voltage	3.0	5.5	V
Vcc	Power supply	4.5	5.5	V
IOH(RXD)	RXD terminal HIGH level output current	-2		mA
Iol(RXD)	RXD terminal LOW level output current		2	mA
TA	Operating ambient temperature	-40	125	°C

Thermal Information

Package Type	θ _{JA}	θյς	Unit
8-Pin SOIC	118	48	°C/W
8-Pin QFN	51	23	°C/W

Electrical Characteristics

All test conditions: V_{CC} = 4.5 V to 5.5 V, V_{IO} = 3.0 V to 5.5 V, T_A = -40°C to 125°C, unless otherwise noted.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
		TXD = 0 V, R_L = 60 Ω, C_L = open, R_{CM} = open, S = 0 V		50		mA
	Normal mode (dominant)	$TXD = 0 V, R_L = 50 \Omega, C_L = open, R_{CM} = open, S = 0 V$		52		mA
Icc	Normal mode (dominant-bus fault)	TXD = 0 V, S = 0 V, CANH = -12 V, R _L = open, C _L = open, R _{CM} = open		74		mA
	Normal mode (recessive)	$TXD = V_{CC}, R_L = 50 \Omega, C_L = open, R_{CM} = open, S = 0 V$		1.3		mA
	Standby mode	TXD = V _{CC} , RL = 50 Ω, C _L = open, R _{CM} = open, STB = V _{CC}		3.5		μA
lio	Normal and Standby modes	RXD Floating, TXD = S = 0 or V _{IO}		73		μA
	Rising undervoltage detection on V_{CC} for protected mode			4.0	4.4	V
UVvcc	Falling undervoltage detection on V_{CC} for protected mode		3.6	3.9	4.15	V
VHYS(UVVCC)	Hysteresis voltage on UVVCC			200		mV
UV _{VIO}	Undervoltage detection on VIO for protected mode		1.3		2.75	V
VHYS(UVVIO)	Hysteresis voltage on UV _{VIO} for protected mode			150		mV
Pin-STB (m	ode select input)					
VIH	High-level input voltage		0.7 x Vio			V
VIL	Low-level input voltage				0.3 x V _{IO}	V
Іін	High-level input leakage current	STB = V_{CC} or V_{IO} = 5.5 V			30	μA
IIL	Low-level input leakage current	STB = 0 V, V _{CC} = V _{IO} = 5.5 V	-2	0	2	μA
I _{lkg(OFF)}	Unpowered leakage current	STB = 5.5 V, V _{CC} = V _{IO} = 0 V	-1	0	1	μA
Pin-TXD (C	AN transmit data input)					•
VIH	High-level input voltage		0.7 x V _{IO}			V
VIL	Low-level input voltage				0.3 x V _{IO}	V
Іін	High-level input leakage current	S = V _{CC} or V _{IO} = 5.5 V	-2.5	0	1	μA
IIL	Low-level input leakage current	S = 0 V, V _{CC} = V _{IO} = 5.5 V	-100	-63	-7	μA
I _{lkg(OFF)}	Unpowered leakage current	TXD = 5.5 V, V _{CC} = V _{IO} = 0 V	-1	0	1	μA
Cı	Input capacitance ⁽¹⁾			4.5		pF

(1) Typ data is based on bench test by LRC meter E4980AL.

Electrical Characteristics (Continued)

All test conditions: V_{CC} = 4.5 V to 5.5 V, V_{IO} = 3.0 V to 5.5 V, T_A = -40°C to 125°C, unless otherwise noted.

Symbol	Parameter		Conditions	Min	Тур	Max	Unit
Pin- RXD (C	AN receive data output	t)					
Vон	High-level output volta	ge	Devices with the "V" suffix (I/O levelshifting), $I_0 = -2 \text{ mA}$	0.8 × Vio			V
Vol	Low-level output voltag	je	Devices with the "V" suffix (I/O levelshifting), $I_0 = +2 \text{ mA}$			0.2 x V _{IO}	V
I _{lkg(OFF)}	Unpowered leakage ci	urrent	RXD = 5.5 V, V_{CC} = 0 V, V_{IO} = 0 V	-1	0	1	μA
Driver elect	rical characteristics						
Maria	Bus output voltage	CANH	TXD = 0 V, S = 0 V, 50 $\Omega \le R_L \le$	2.75		4.5	V
Vo(dom)	(dominant)	CANL	65 Ω, C _L = open, R _{CM} = open	0.5		2.25	V
V _{O(REC)}	Bus output voltage (recessive)	CANH CANL	$\begin{split} TXD = V_{CC}, \ V_{IO} = V_{CC}, \ S = V_{CC} \\ \text{or } 0 \ V^{(2)}, \ R_L = \text{open} \ (\text{no load}), \\ R_{CM} = \text{open} \end{split}$	2	0.5 x Vcc	3	v
	Differential output CANH voltage (dominant) CANL		$\begin{aligned} TXD &= 0 \ V, \ S &= 0 \ V, \ 45 \ \Omega \ \leq \ R_L \\ &< 50 \ \Omega, \ C_L = open, \ R_{CM} = open \end{aligned}$	1.4		3	v
V _{OD(DOM)}			$\begin{array}{l} TXD = 0 \ V, \ S = 0 \ V, \ 50 \ \Omega \ \leq \ R_L \\ \leq \ 65 \ \Omega, \ C_L = open, \ R_{CM} = open \end{array}$	1.5		3	v
			TXD = 0 V, S = 0 V, R _L = 2240 Ω , C _L = open, R _{CM} = open	1.5		5	v
			$TXD = V_{CC}, S = 0 V, R_L = 60 \Omega,$ $C_L = open, R_{CM} = open$	-120		12	mV
$V_{\text{OD}(\text{REC})}$	Vod(rec)	V _{OD(REC)}	TXD = V_{CC} , S = 0 V, R _L = open (no load), C _L = open, R _{CM} = open	-50		50	mV
V _{SYM}	Transient symmetry (d recessive) (V _{O(CANH)} + V _{CC} ⁽¹⁾		S at 0 V, Rterm = 60 Ω , Csplit = 4.7 nF, C _L = open, R _{CM} = open, T _{XD} = 250 kHz, 1 MHz		1.0		V/V
Vsym_dc	DC Output symmetry (or recessive) (V _{CC} – Vo V _{O(CANL)}) ⁽¹⁾		S = 0 V, R _L = 60 Ω , C _L = open, R _{CM} = open	-1	0.2	1	v
	Short-circuit steady-sta	ate output	S at 0 V, $V_{CANH} = -5$ V to 40 V, CANH = open, TXD = 0 V	-100			m^
los(ss_dom)	current, dominant		S at 0 V, $V_{CANL} = -5$ V to 40 V, CANH = open, TXD = 0 V			100	mA
los(ss_rec)	Short-circuit steady-sta current, recessive	ate output	$-27 V \le V_{BUS} \le 32 V$, Where $V_{BUS} = CANH = CANL$, TXD = V_{CC} , all modes	-5		5	mA

(1) Test data based on bench test and design simulation.

Electrical Characteristics (Continued)

All test conditions: V_{CC} = 4.5 V to 5.5 V, V_{IO} = 3.0 V to 5.5 V, T_A = -40°C to 125°C, unless otherwise noted.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Receiver el	ectrical characteristics					
V _{CM}	Common mode range, normal mode	STB = 0 or V _{CC} or V _{IO}	-30		+30	V
V _{IT+}	Positive-going input threshold voltage, all modes	STB = 0 or V _{CC} or V _{IO} , -20 V \leq			900	mV
V _{IT} -	Negative-going input threshold voltage, all modes	$V_{CM} \leq +20 V$	400			
V_{IT^+}	Positive-going input threshold voltage, all modes	STB = 0 or V _{CC} or V _{IO} , -30 V \leq			1000	mV
V _{IT} -	Negative-going input threshold voltage, all modes	$V_{CM} \leq +30 V$	400			
V _{HYS}	Hysteresis voltage (V _{IT+} – V _{IT-}) ⁽¹⁾	STB = 0 or V _{CC} or V _{IO}		115		mV
I _{lkg} (IOFF)	Power-off (unpowered) bus input leakage current	$CANH = CANL = 5 V, V_{CC} = V_{IO}$ $= 0 V$			4.8	μA
Cı	Input capacitance to ground (CANH or CANL) ⁽²⁾			35		pF
CID	Differential input capacitance (3)			20		pF
RID	Differential input resistance	$TXD = V_{CC} = V_{IO} = 5 V, STB = 0$	30		80	kΩ
R _{IN}	Input resistance (CANH or CANL)	$V, -30 V \leq V_{CM} \leq +30 V$	15		40	kΩ
Rin(m)	Input resistance matching: [1 – R _{IN(CANH)} / R _{IN(CANL)}] × 100%	V _{CANH} = V _{CANL} = 5 V	-2%		+2%	
Power Con	sumption					
		$V_{CC} = 5 V$, $V_{IO} = 3.3 V$ (if applicable), $T_A = 25^{\circ}C$, $R_L = 60$ Ω , S at 0 V, Input to TXD at 250 kHz, $C_{L,RXD} = 15 pF$. Typical CAN operating conditions at 500 kbps with 25% transmission (dominant) rate				mW
PD	Average power dissipation	$V_{CC} = 5.5 \text{ V}, V_{IO} = 3.6 \text{ V}$ (if applicable), $T_A = 125^{\circ}\text{C}, R_L = 50$ Ω , S at 0 V, Input to TXD at 0.5 MHz, $C_{L_{RXD}} = 15 \text{ pF}$. Typical high load CAN operating conditions at 1 Mbps with 50% transmission (dominant) rate and loaded network.				mW

(1) Test data based on bench test and design simulation.

(2) Typ data is based on bench test by LRC meter E4980AL.

(3) Typ data is based on bench test by LRC meter E4980AL.

Electrical Characteristics-AC Timing Requirements (Continued)

All test conditions: V_{DD} = 5 V, T_A = +25°C, unless otherwise noted.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Device Sw	vitching Characteristics					
tprop(loop 1)	Total loop delay, driver input (TXD) to receiver output (RXD), recessive to dominant	STB = 0 V, RL = 60 Ω, CL		100		ns
tprop(loop 2)	Total loop delay, driver input (TXD) to receiver output (RXD), dominant to recessive	= 100 pF, C _{L(RXD)} = 15 pF		110		115
tmode	Mode change time, from Normal to Silent or from Silent to Normal			0.15		μs
t _{pHR}	Propagation delay time, high TXD to driver recessive (dominant to recessive)			70		
t _{pLD}	Propagation delay time, low TXD to driver dominant (recessive to dominant)	STB = 0 V, R _L = 60 Ω, C _L = 100 pF, R _{CM} = open		42		ns
t _{sk(p)}	Pulse skew ($ t_{pHR} - t_{pLD} $) ⁽¹⁾			20		
t _R	Differential output signal rise time ⁽¹⁾			45		
t⊧	Differential output signal fall time ⁽¹⁾			45		
t _{тхd_dto}	TXD Dominant timeout	S = 0 V, R _L = 60 Ω , C _L = open	1.2		3.8	ms
Receiver S	Switching Characteristics					
t _{pRH}	Propagation delay time, bus recessive input to high output (Dominant to Recessive) ⁽¹⁾			75		
t _{pDL}	Propagation delay time, bus dominant input to low output (Recessive to Dominant) ⁽¹⁾	STB = 0 V, C _{L(RXD)} = 15 pF		59		ns
t _R	RXD Output signal rise time ⁽¹⁾			10		
t⊧	RXD Output signal fall time ⁽¹⁾			10		

(1) Test data based on bench test and design simulation

Electrical Characteristics-AC Timing Requirements (Continued)

All test conditions: V_{DD} = 5 V, T_A = +25°C, unless otherwise noted.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit			
FD Timing Parameters									
	Bit time on CAN bus output pins with t _{BIT(TXD)} = 500 ns, all devices		435		530				
tbit(bus)	Bit time on CAN bus output pins with $t_{BIT(TXD)}$ = 200 ns, G device variants only		155		210				
t _{bit(RXD)}	Bit time on RXD output pins with t _{BIT(TXD)} = 500 ns, all devices	STB = 0 V, R_L = 60 Ω , C_L = 100 pF, $C_{L(RXD)}$ = 15 pF, Δt_{REC} = $t_{BIT(RXD)}$ – $t_{BIT(BUS)}$	400		550				
	Bit time on RXD output pins with t _{BIT(TXD)} = 200 ns, G device variants only		120		220	ns			
	Receiver timing symmetry with t _{BIT(TXD)} = 500 ns, all devices		-65		40				
∆t _{REC}	Receiver timing symmetry with t _{BIT(TXD)} = 200 ns, G device variants only		-45		15				
t _{BUS_DTO}	bus dominant time-out time	Standby mode		2		ms			
tfitr(wake)bus	bus wake-up filter time	pin 5 = VIO, in standby mode		1.5		μs			
td(stb-norm)	standby to normal mode delay time			25		μs			



Detailed Description

Overview

The TPT1042 is a CAN transceiver that meets the ISO11898 High-speed CAN (Controller Area Network) physical layer standard. The device is designed in CAN FD networks up to 5 Mbps, and enhances timing margin and higher data rates in long and highly-loaded networks. As the design, the device features cross-wire, overvoltage and loss of ground protection from -70 V to +70 V, overtemperature shutdown, a -30 V to +30 V common-mode range. The TPT1042 has a secondary power supply input for I/O level shifting the input pin thresholds and RXD output level, and the device comes with standby mode which is also waked up from CAN BUS, and it includes many protection features to enhance device and network robustness.

Functional Block Diagram

Feature Description

Table	1	Driver	Function	Table
-------	---	--------	----------	-------

Device	Inputs		Out	puts	Driven DUC State	
Device	STB	TXD	CANH	CANL	Driven BUS State	
All Devices		L	Н	L	Dominant	
	L or open	H or Open	Z	Z	Recessive	
	Н	Х	Z	Z	Recessive	

Table 2 Receiver Function Table

Device Mode	CAN Differential Inputs VID = VCANH - VCANL	Bus State	RXD Terminal
Normal or Silent	$V_{ID} \geq V_{IT+(MAX)}$	Dominant	L
	$V_{IT-(MIN)} < V_{ID} < V_{IT+(MAX)}$	Indeterminate	Indeterminate

VID ≤ VIT-(MIN)	Recessive	Н
Open ($V_{ID} \approx 0 V$)	Open	Н

Normal mode

A LOW level on pin STB selects Normal mode. In this mode, the transceiver will transmit and receive data via the bus lines CANH and CANL. The differential receiver converts the analog data on the bus lines into digital data which is output to pin RXD. The slopes of the output signals on the bus lines are controlled internally and are optimized in a way that guarantees the lowest possible Electro Magnetic Emission (EME).

Standby mode

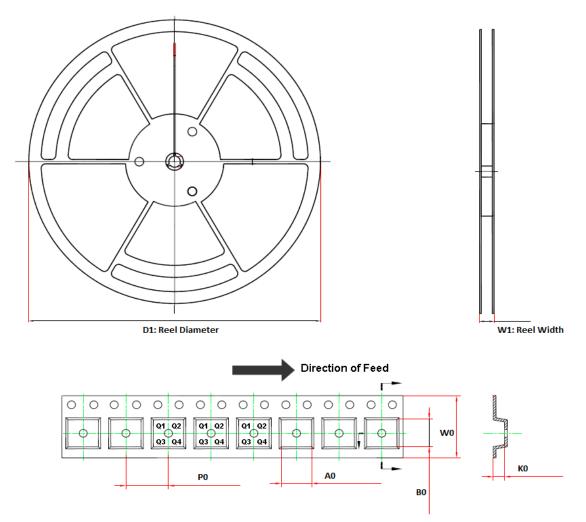
Activate low power Standby mode by setting STB terminal high. In this mode the bus transmitter will not send data nor will the normal mode receiver accept data as the bus lines are biased to ground minimizing the system supply current. Only the low power receiver will be actively monitoring the bus for activity. RXD indicates a valid wake up event after a wake-up pattern (WUP) has been detected on the Bus. The low power receiver is powered using only the VIO pin. This allows V_{CC} to be removed reducing power consumption further.

The bus lines are biased to ground in Standby mode to minimize the required system supply current. The low power receiver is supplied by V_{IO} and is capable of detecting CAN bus activity even if V_{IO} is the only supply voltage available to the transceiver.

Time-out function in TXD dominant mode

When the TXD pin is set LOW, the timer of 'TXD dominant time-out' is started. If the LOW state on TXD persists for longer than t_{TXD_DTO} , the transmitter is disabled and the bus lines is in recessive state. This function prevents a hardware and/or software application failure from driving the bus lines to a permanent dominant state which will block all network communications. The TXD dominant time-out timer is reset as TXD is pulled to HIGH. The TXD dominant time-out time also defines the data rate should be faster than 40 kbit/s.

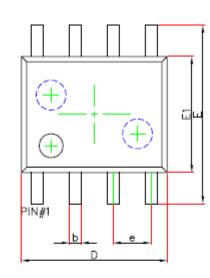
Time-out function in Bus dominant mode

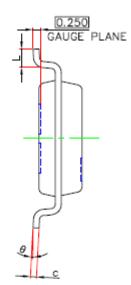

In Standby mode, the timer of 'bus dominant time-out' is started when the CAN bus changes from recessive to dominant state. If the dominant state on the bus persists for longer than t_{BUS_DTO} bus, the RXD pin is reset to HIGH. If a bus short-circuit or a failure in one of the other nodes on the network, this function prevents a clamped dominant bus from generating a permanent wake-up request. The bus dominant time-out timer is reset when the CAN bus changes from dominant to recessive state.

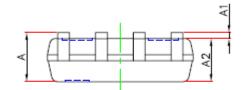
Overtemperature protection

The output drivers are protected against overtemperature conditions. If the virtual junction temperature exceeds the shutdown junction temperature, T_{OTP} , the output drivers will be disabled until the virtual junction temperature falls below T_{OTP} and TXD becomes recessive again. Including the TXD condition ensures that output driver oscillation due to temperature drift is avoided.

Tape and Reel Information

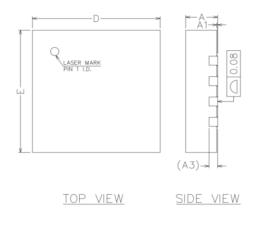



Order Number	Package	D1 (mm)	A0 (mm)	K0 (mm)	W0 (mm)	W1 (mm)	B0 (mm)	P0 (mm)	Pin1 Quadrant
TPT1042V-SO1R	8-Pin SOP	330.0	6.4	2.1	12.0	17.6	5.4	8.0	Q1
TPT1042V-DF6R	8-Pin DFN	330.0	3.3	1.1	12.0	17.6	3.3	8.0	Q1

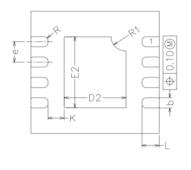


Package Outline Dimensions

SO1R(SOP-8)



Symbol	Dimensions Ir	n Millimeters	Dimensions In Inches		
Symbol	Min.	Max.	Min.	Max.	
A	1.450	1.750	0.057	0.069	
A1	0.100	0.250	0.004	0.010	
A2	1.350	1.550	0.053	0.061	
b	0.330	0.510	0.013	0.020	
С	0.170	0.250	0.007	0.010	
D	4.700	5.100	0.185	0.201	
E	5.800	6.200	0.228	0.244	
E1	3.800	4.000	0.150	0.157	
е	1.270(BSC)		0.050((BSC)	
L	0.400	0.800	0.016	0.031	
θ	0°	8°	0°	8°	


DF6R (DFN3X3-8L)

COMMON DIMENSIONS (UNITS OF MEASURE=MILLIMETER)

SYMBOL	MIN	NOM	MAX			
А	0.70	0.75	0.80			
A1	0.00	0.02	0.05			
A3		0.203REF	-			
b	0.20	0.25	0.30			
D	2.90	3.00	3.10			
E	2.90	3.00	3.10			
D2	1.35	1.45	1.55			
E2	1.64	1.74	1.84			
е	0.40	0.50	0.60			
К	0.275	0.375	0.475			
L	0.30	0.40	0.50			
R		0.10REF				
R1	0.35REF					

<u>SIDE VIEW</u>

BOTTOM VIEW

Order Information

Order Number	Operating Temperature Range	Package	Marking Information	MSL	Transport Media, Quantity	Eco Plan
TPT1042V-SO1R	−40 to 125°C	8-Pin SOP	1042V	MSL3	Tape and Reel, 4000	Green
TPT1042V-DF6R	−40 to 125°C	8-Pin DFN	1042V	MSL3	Tape and Reel, 4000	Green

Green: 3PEAK defines "Green" to mean RoHS compatible and free of halogen substances.

3PEAK and the 3PEAK logo are registered trademarks of 3PEAK INCORPORATED. All other trademarks are the property of their respective owners.